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EVOLUTION AND MERGER OF ISOLATED VORTEX STRUCTURES

Edward A. Overman, 14 and Norman J. Zabusky

Institute for Computational Mathematics and Applications
Department of Mathematics and Statistics

University of Pittsburgh, Pittsburgh, PA 15261

ABSTRACT

We present numerical simulations of the instability, merger, and breaking

of two piecewise-constant finite-area-vortex-regions (FAVR's). We use an

improved contour dynamical algorithm with node insertion-and-removal to main-

tain the a priori accuracy. We observe that corotating "V-states" (symmetric

steady-state FAVR's) are unstable when properly perturbed if their centroid-

effective radius ratio, ;/R, is < 1.6, thereby verifying an estimate of

Saffman and Szeto. This causes the FAVR's to approach at an exponential rate,

merge and reform into a stable perturbed elliptical structure with filamentary

arms (to conserve angular momentum). For larger i/R ratios, we observe

regular perimeter oscillations and thereby obtain estimates of e A-

frequency of the perturbed stable V-states. When regions of differenL

vorticity density merge, the larger-density region is eventually entrained

within the smaller-density region. These simulations elucidate the self-

consistent close interactions of isolated vortex regions in two-dimensional

high Reynolds numbers flows.

PACS 47.20.+m, 47.30.+s, 47.25.-c



I. INTRODUCTION

The growth or spread of free shear layers or mixing layers at high

Reynolds number has been known for some time. In recent years, careful

experiments of Freymuth,1 Winant and Browand, 2 and Roshko 3 have shown

that the initial stages of this growth resulted from the process of

"merger" ("pairing" or "coalesence") of like-signed regions of vorticity.

This process was clearly observed in 1973 by Christiansen and Zabusky4 in

numerical simulations of the Euler equations with "wake-like" initial con-

ditions. For certain parameters, they observed that two oppositely-signed

staggered rows of isolated regions of vorticity were unstable. Eventually

like-signed regions merged. They indicated that this process was probably

first documented by Taneda5 in data from experiments on far-wakes behind

bluff bodies.

The merger process had already been found numerically by Christiansen

and Roberts6 with a vortex-in-cell code and also by Zabusky, Hughes and

Roberts 7 with an early contour dynamics (CD) code. In both "inviscid"

studies they began with two FAVR's (piecewise-constant finite-area-vorticity-

regions) with circular boundaries.

In the present paper, we present computations with an improved CD code

which show that the inviscid merger process may also be conveniently viewed

as the long-time behavior of the evolution of an instability of perturbed

steady-state corotating "V-states". These states are symmetric FAVR's whose

boundaries were determined by Saffman and Szeto
8 and Landau and Zabusky

9

by solving numerically nonlinear integral equations that correspond to the

time-independent Euler equations in two dimensions. We also examine the

merger of circular FAVR's with each other and with point vortices and in-

dicate the relevance of this process to simulations of high Reynolds number
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two-dimensional turbulence. The improvement in the CD code results from

the ability to control the truncation error by inserting and removing

contour nodes.

Sec. II describes the V-states, the improved CD code and the diag-

nostics used. Sec. III gives a quantitative account of the merger process

of rotating V-states. Sec. IV describes the merger of circular FAVR's.

Sec. V concludes with a discussion of the relevance of two-FAVR merger to

simulations of two-dimensional turbulent-like motions.

Accension For

i stl
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II. EULER EQUATIONS, ROTATING V-STATES, CONTOUR DYNAMICAL ALGORITHM
AND DIAGNOSTICS

The Euler equations in two space dimensions can be written in vorticity-

stream function form as

W t +  UW x +  vWy = 0, 8 -= E xx +  1Pyy =  "W ' (la,b)

where

u = 1Py, v "4)x" (1c)

If the vorticity is composed of a set of piecewise-constant finite-area-

vortex-regions (or FAVR's), that is, each member of the set is a characteristic

function Xi of magnitude wi and boundary ri , or w(x,y,t) = Z xi(xyt),
11

then

O(xy) = -(27r) " Z l xi G(x-E, y-n)d~dn, (2)i 2iX
IR

where we use the two-dimensional Green's function

G = (I/2)log[(x-) 2+ (y-n)2] = (l/2)log r2  (3)

for flow in an unbounded domain. Eq. (la) says that every point of the fluid

including the boundary is convected with the flow. The evolution equation

for boundary points (x,y) is the area-preserving mapping

(xt,Y t) (u(x,y,t),v(x,y,t)) = (2) " 1 I J log r(d&,dn). (4)
ii
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We have used Green's theorem to replace the area integral over the domain

of xi by the line integral over its boundary, ri, thus reducing the

dimension by one.

It is well known10 that two point (singular) vortices of like cir-

culation r and separation 2i rotate about one another with angular

velocity

2sr = r/47 2 .

In the spirit of desingularization introduced by Deem and Zabusky, one

may seek symmetric uniformly rotating doubly-connected regions of finite-

area and piecewise-constant vorticity. That is, we apply the boundary con-

dition

n * Vparticle =  -* Vboundary (5)

or

as = sOr(dr/ds) = 0 (6)

where s is the arc length and integrate once to obtain

(x,y) + 1I (x2 + y2) - c,, (x,y) c ri , (7)

where i = 1,2 corresponds to the contours, and i is obtained from (2)

as a line integral over both contours. Since the location of the boundary

is unknown, Eq. (7) is a nonlinear integral equation. It has been solved

by Saffman and Szeto8 and Landau and Zabusky by different numerical iterative

procedures. Results from the latter that we call "V-states" are illustrated

in Fig. 1.

The numbers on the figure refer to Table 1, which is excerpted from
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Table 3 in Reference 9. Included are: x2 , the distance from the center of

rotation to the closest contour point; a, the aspect ratio = maximum

vertical diameter/(l-x 2); A, the area within one contour; R = (A/n)I/2,

the effective "radius" of a contour; P, the perimeter of a contour; R,

the distance between the center of area and the center of rotation; 0,

the angular velocity of the V-state (the bifurcation parameter); Q/A, the

normalized angular velocity; and Q* = A/41ir , the angular velocity of a

pair of point vortices of circulation A and separation distance 2i. For

our V-state dynamical simulations we used state No. 8, which has x2 = 0.1

or (R/R) = 1.6026. Note that Saffman and Szeto8 used Kelvin's ideas on the

exchange of stability and showed with numerical calculations that V-states

with (R/R) < 1.58 are unstable.

The contour dynamics algorithm is obtained by discretizing Eq. (4),7

i.e.,

Ni
= Wi E 6u . (cos e ., sin e .) (8)

i n=l m,n;i n;i

where the i-sum is over all contours and for convenience the i label is

suppressed below. We have assumed that nodes n and n+l are connected

by a straight line-segment of length hn and angle en (from node n to

n+l). We carry out exactly the integration in Eq. (4) and obtain

h
um n [(l+A )In rm,n+l - An In rm,n - 1 + B arctan (2B /C) + 71B I H(-Cn)]

(9)

where rmn is the straight line distance between nodes m and n,

(Xn-xm)(Xn+l-X n ) + (yn-Ym)(Yn+l-Yn)An h 2
hn
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B n (x n- Xm)(Yn+l-Yn) h2(Yn-Ym)(Xn+l-Xn)

n

r2 + 2
Cn = mn rn+l
n h2 -

n

and H is the Heaviside step function, i.e.,

S1 if z > 0

H(z) =

0 if z<0

If n = m, Eq. (9) simplifies to

hn

am,m 7In rmTm+ - 11,

since Am = Bm = 0, while if n = m - 1

h
AU n In r=- n m - 1],am,m. 1  2 - r m~-

since Am_1 = -1 and Bm.1 = 0. Eq. (9) differs from the previously given

formula (Ref. 7, Eq. 18) in the last term. This term appears only when

Cn < 0, or, equivalently, when the angle between the lines from node m to

node n and from node m to node n+l > Tr/2. As discussed below, the

rode insertion-and-removal, algorithm will only allow this to happer if the

distance between different contours or between different parts of the same

contours is less than hmin' the minimum allowed distance between adjacent

nodes.

The velocities in (8) are used to move the contour node (xmy m) with

an Euler predictor and a trapezoidal corrector algorithm. The time step

At is determined by the maximum change in area (or angular momentum) to be
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allowed per unit time. (Since we are solving a Lagrangian system of

equations, we do not have a Courant condition to determine the time step.)

As shown in the Appendix, the relative change in area of a circular FAVR

in one unit of time is

AA(l)/A(0) A~l) - A(0). 1 dV(O)/ds4 (At)3(10)A1A(O) 4 , 10

where A(t) is the area at time t and V(0) is the velocity of particles

on the contour at t = 0. Thus,

At = (4 AA(I)/A(O))1 /3 [dV(0)/ds -4 /3. (11)

For arbitrary contours our algorithm chooses At analogous to (11), namely

atz 4AAM1) 1/3 (r~ ldV1(0) ) 4/3, (12)M T) I I ds

where the maximum is over all the nodes on all the contours. In all the

runs shown here AA(1)/A(0) = 0.84375 x 10"6  and At is readjusted every

20 time steps. We find that .015 < At < .02 for all the runs.

In the improved node insertion-and-removal algorithm we insert and

remove nodes using both local 12 and global adaptive methods. Locally, we

attempt to set the internodal istance k to

Cl/ ck (13)
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which is inversely proportional to the local curvature, but we require

it to satisfy two constraints

h( g ) > hk  in (14a)max - k h-mi n

and

(l-r)h k-l _I h k _<  (l1r)hk I .  (14b)

In all the runs cI = 0.1 (which places -201 nodes on a circle of unit
radius), hmi n = 0.01 and r = 0.3. Globally, we choose h(g) to take

i 01 max
into account the possibility that one part of a contour may approach another

part or that two contours may approach each other. This is done by settinq

h(g) = max{min[h m c dmin]" hmi } , (15)max max' 2 min min

where dmin' obtained by a search algorithm, is the minimum distance from

node k to a point on a neighboring contour or a "nonadjacent" point on the

same contour. That is, h(g) will usually be the minimum of hm, themax max'
maximum allowed distance between nodes, and c2 dmin . However, when contours

approach, we may have c2 dmin < hmin . To avoid this occurrence we have

included in (15) the requirement that h(g) > hmin" (In all our runs hmax = 0.20max mn a
and c2 = 0.50.)

As diagnostics we monitor the perimeter, P, area, A, (a quantity

conserved in the continuum representation) and contour curvature,

K(s) = XsYss - XssY s. The origin s = 0 of these curvature plots (e.g.,

Fig. 3b) corresponds to the point on the contour which at t = 0 is

farthest from the origin and which is advected by (8). This point is

designated with a triangle in the physical (x,y) plane. The vertical

...
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scale has a geometric variation (12, 22, 32, 42, 52) and the curves are

"clipped" at + 52. The curvature is computed numerically by differenti-

ating a periodic cubic spline that is fit to the nodes as described in

Reference 12, Appendix C. If contours "sharpen" and "break", as observed

below, this differentiation can give rise to small-scale oscillations

because the cubic spline has difficulty fitting such distributions. These

oscillations do not affect our velocities since the curvature is not used

in (8).
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III. DYNAMICAL EVOLUTION OF PERTURBED ROTATING V-STATES

In case 1.1 the state is "unperturbed", that is, only numerical pro-

cesses introduce perturbations. In cases 1.2 to 1.6 we examine symmetric

perturbations and in case 1.7 we examine an asymmetric perturbation.

Parameters for runs in this section are given in Table 2. All contours

at t = 0 were represented by 72 nodes.

We establish the stationarity of the unperturbed V-state in case 1.1.

We let our algorithm evolve state No. 8 up to TF = 125, slightly more

than two periods of rotation. In Fig. 2 we show the area change

[AA/A (A(t) - A(O))/A(O)1, perimeter change [AP/P - (P(t) - P(O))/P(O)1,

change in the distance between the center of area and the center of rotation

R[ai/i = (i(t) - i(O))/i(O)], and maximum curvature change

(AK/K = (maxlK(t)l - maxli(O)j)/maxjK(O)II. The algorithm kept the number

of nodes constant at 72. The linear variation in area change, 0.0458% per

period (61.19), following a small negative transient is due to truncation

errors, as described above. The perimeter change exhibits an oscillation

on a monotonically increasing background that is associated with the area

change. The amplitude of the oscillation is a factor of 5 smaller than

hmin = 0.01. The period of the oscillation, 40.6, is 66% of the rotation

period. This is an indication of the period of the lowest eigenvalue of

small amplitude (linear) perturbations to V-state No. 8. The change in

x is 1800 out of phase with the P change and has the same period. There

is a very slow monotonic outward movement of each contour, most likely a

numerical artifact. The lack of an inward drift indicates that V-state

No. 8 is stable. The maximum curvature change shows an approximate 5'

peak-to-peak variation with the same period. The spiky behavior is pre-

sently unexplained but, no doubt, due to the cubic spline representation.
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Thus, we conclude that numerical processes weakly excite internal degrees

of freedom of the V-state and also induce a small but monotonically in-

creasing area or circulation change.

In case 1.2 we introduce a symmetric outward perturbation. That is,

we displace each contour outward by 0.02 or increase i from 0.5692 to

0.5892 or (-x/R) from 1.6027 to 1.6590. The duration of the run is 163.

The period of rotation as determined from Fig. 3 is 68 (= 163.0/2.4), an

increase of 6.3 or 10% over the previous case. This period can be under-

stood if we assume that this state corresponds to a perturbed V-state

between No. 7 and No. 8 in Table 1. The maximum and minimum i for this

state are 0.593 and 0.589. The average of 0.591 is 44% of the way from

No. 7 to No. 8. Interpolating Q/A we find for this state that Q = .0941

so that the period is 66.8, close to the observed value. Note the regular

behavior of the curvature in the sequence in panel b.

Diagnostics are given in Fig. 4. The area change in Fig. 4 shows a

small oscillation imposed on a linear variation of smaller magnitude than

in case 1.1. The oscillations are more clearly seen in the remaining dia-

gnostics of Fig. 4. The period is 26 or 38% of 68. It is unclear whether

this is the lowest or next-lowest eigenvalue associated with perturbations

to the contour of the appropriate V-state. The perimeter and i deviation

show no apparent monotonic behavior. Note that the perimeter, i and cur-

vature changes are a factor of 10 larger than in case 1.1. The negative

perimeter and curvature changes are indications that the initial condition

can be considered a "sharpened" perturbation of an initial V-state which has

an R(O) larger than that corresponding to state No. 8. This argument

iupports the calculation of the increase In period given above. Note that

a node on the contour makes three full revolutions during 50 units of time
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or, approximately one revolution Per (1/4) period.

In case 1.3 we seek an unstable regime and displace both contours

inward by 0.005 or decrease i from 0.5692 to 0.5642 or (i/R) from

1.6027 to 1.5886. We obtain the gradual merger for 0 < t < 32.0 shown

in Fig. 5 with diagnostics in Fig. 6. Note how well the algorithm allows

the contours to "slide" close to one another. The maximum curvature grows

as they approach. There are two oscillatory regions at t = 30.0 in Fig. 5b

where the curvature on the graphs is limited to + 52. These are associated

with the sharp corners on each contour, The origin of these plots corresponds

to the triangle on the (x,y) plots. The growth in perimeter by a factor

of 2.19 (= 5.093/2.324) is evident in the increase of the length of the s-axis.

The number of nodes grows by a factor of 6.92 (= 498/72). During this time

the area change increases by 0.071%, a more rapid increase than in the stable

evolutions of cases 1.1 and 1.2. In Fig. 6 we replace the plot of the maxi-

mum curvature change with the plot of the logarithm of R in order to better

show the rate of approach of the two FAVR's. The variation in i shows an

exponential growth after an initial transient 0 < t < 4 in Fig. 6. The

straight line fit gives a growth rate a -0.13 (in eqt).

In case 1.4 we displace both contours inward by 0.02 or decrease x

from 0.5692 to 0.5492 or (R/R) from 1.6027 to 1.5463 and observe a faster

merger as shown in Fig. 7 and the diagnostics in Fig. 8. The qualitative

features are the same as in case 1.3 except that the time-scale is reduced,

that is, the system is more unstable. (Here a = 0.38.) As the tips of the

contours overlap, the curvature becomes negative and some oscillatory structure

again develops locally because of the locally poor fit of the periodic cubic

spline. Between 9.0 < t < 11.0 we see two sharp minus-to-plus transitions

associated with the tips of the two contours. There is also a rapid increase
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in nodes from N 146 to N = 473 between 14.0 < t < 18.0.

In case 1.5 we continue the previous run to longer times. We remove

the common boundary at t = 10 and smooth the state slightly to obtain a

new initial condition whose evolution is shown in Fig. 9. The area of the

singly-connected state of Fig. 9 at t = 10 is 0.7893, or 0.37% smaller

than the corresponding state in Fig. 7 at t = 10. The smoothed curvature

in Fig. 9b at t z 10 is nearly identical to that in Fig. 7b at t = 10

in the region enclosed between the arrows above. The slight asymmetry in

the negative peaks (arrows below) is an artifact of the cubic spline fit

to the contour.

The evolution of Fig. 9 may be considered that of a 6:1 ellipse with

a strong symmetrical perturbation.13  (Results of asymmetrical perturbations

to a 3.5:1 ellipse have been given previously. 14 ) The indentations fill out

as waves propagate about the contour, but the contour "breaks" and symmetrical

filamentary arms form and grow in length. At t = 37.5 we see the arms

tending to pinch near the central region of vorticity (*), and evidence that

the arms are beginning to "roll-up" at their ends (**). The latter is more

clearly seen in the curvature plots of Fig. 9b (t = 30, 35, and 37.5). The

inclined arrows point to a negative dip in curvature, the signature for

incipient roll-up. Note that the ellipse-like central region has a ratio

of axes - 2.8.

In case 1.6 we do not displace the contours but perturb the right FAVR

of V-state No. 8 with a "third" harmonic to obtain an asymmetric perturbation.

That is, if R(8)(s) is the position as a function of arc length with respect

to the centroid, we obtain the perturbed position R as

Vs) = 2(,)(s) + (O.OO5)cos(6rs/P 8)) in(S) (16)
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where e n is the outward normal to the unperturbed contour and P(8 ) is

the perimeter of the unperturbed contour. This causes the right contour

to have an area A = 0.4076 and perimeter P = 2.357, 2.85% and 1.33%

larger than the left contour, respectively. It also causes the right

centroid to be shifted inward to R = 0.5691 a decrease of 0.02%. We

observe merger on a time scale somewhat larger than in case 1.3. The

asymmetric nature of the evolution is shown in the diagnostics of Fig. 11.
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IV. DYNAMICAL EVOLUTION OF FAVR'. OF VARYING STRENGTH AND AREA

We next present a panorama of cases which illustrates how a change

in vorticity density alters the merger process from one of "wrap-around"

to one of "entrainment". The parameters and properties of the cases are

summarized in Table 3. In cases 2.1 through 2.4 and 2.7 FAVR 1 (left)and

2 (right) are circles, and in cases 2.5 and 2.6 FAVR 1 is a circle and

PV 2 is a point vortex. In all cases FAVR 1 is a circle of radius 1,

centered at the origin, with vorticity 1. FAVR 2 is a circle of radius

r 2 centered at the point (X2cO) with vorticity 2 and circulation r 2

and PV 2 is a point vortex, also centered at 'x2cO), with circulation

I"2•

In cases 2.1 to 2.3, Fig. 12a,b,c, r2 = 0.2 and w2 = 2.5 so that

the ratio of the circulations of FAVR 1 to FAVR 2 is 10:1. In case 2.1,

panel a, the separation is sufficient, x2c = 2.0, so no merger occurs.

We see mutual interactions that lead to elliptical and higher harmonic

deformations and near-recurrence to initial states. In case 2.2, panel b,

we decrease the separation distance, X2c = 1.8, and obtain merger. Note that

as the smaller region slides along the larger, it tends to "draw-out" the

vorticity in a "step". The "angle" of the step (included between the

dashed lines) increases with time, indicating that entrainment is occurring.

This results because the smaller region has the larger vorticity density.

We conjecture that eventually region I will be wrapped around region 2. In

case 2.3, panel c, we decrease the separation distance further, X2c 's 1.6,

and see similar quantitative features to those obtained in case 2.2, except

that the time scale has decreased to 8/19 - 0.42.

In case 2.4, Fig. 12d, r2 - (.1)'/2 and w2 - 1.0 so the ratio of cir-

culations is still 10:1. x2c 1.8 as in case 2.2. There is a tendency
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toward "wrap-around". FAVR 2 increases in perimeter from 1.9861 to 9.7239

and the number of nodes increases from 63 to 240 at t = 12. Also the

center of area (the "x") of FAVR 2 leaves the inside of the region between

8 < t < 9 as it elongates and curves and approaches the first FAVR.

In cases 2.5 and 2.6, Fig. 13a,b, we "singularize" the right FAVR and

keep the ratio of circulations at 10:1. The point vortex is represented

by a point surrounded by a square. In case 2.5, panel a, they are suffi-

ciently separated, X2c = 2.0, so no merger occurs as in case 2.1, Fig. 12a.

We have run this for a long time (tF = 328) and show somewhat more than one

full rotation of the point about the FAVR near the end of the run. In case

2.6, panel b, the initial distance of separation is decreased, X2c = 1.8,

and merger by "entrainment" occurs, which has a qualitatively different

character than case 2.2, Fig. 12b. In case 2.7, panel c, the right vortex

is a FAVR with r2 = 0.2 and w2 = 7.854 so the ratio of circulations of

FAVR 1 to FAVR 2 is 3.183:1. The initial distance of separation is the

same as in case 2.5 where no merger occurs, i.e., x2c = 2.0. We observe

qualitatively similar merger by entrainment proceeding at a faster time-

scale than in case 2.6. Thus, decreasing the circulation ratios (by increasing

the vorticity density of the smaller) changes a stable system (case 2.1) into

an unstable system (case 2.7). Furthermore, the qualitative nature of the

entrainment of regions of larger vorticity density is independent of whether

they are point vortices or small FAVR's.
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V. CONCLUSIONS

We have applied an improved contour dynamical algorithm to study the

merger process. By using an adaptive node insertion-and-removal algorithm

we control the magnitude of the truncation error. We present diagnostics

including a "microscopic" view of curvature vs arc length of contours.

We observe that if a stable V-state or a stable perturbed V-state is

displaced inward across the point of "exchange of stability" we will have

merger. Furthermore, the larger the inward perturbation the more unstable

is the resulting system or the larger the real part of the dominant eigen-

value a (eat).

If two states with different vorticity density merge, the region of

larger vorticity density will be entrained within the region of smaller

vorticity density. Physically we expect this, for the Rayleigh stability

criteria states that localized vortex regions with negative vorticity grad-

ients and no inflection points are stable. That is, the merger process con-

tinues until something like a stable-perturbed state is obtained. We guess

that these states are "near" to the desingularized doubly-connected

stationary states conjectured by Landau and Zabusky.
9

The "breaking" of evolving merged vortex states was already observed

by Christiansen and Zabusky4 in the qualitative simulations of model in-

viscid wakes. The resulting "central" region of vorticity has the form of

a stable perturbed elliptical FAVR and the filamentary arms,if properly

dissociated ("pinched") from the central region.appear to be in the process

of slow "roll-up", something one expects from a sheetlike region of vorticity.

There are lessons here for the simulation of two-dimensional environments

with turbulent-like motions. Finite-difference or spectral methods are

adequate for internal flows or flows with periodic boundary conditions at
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moderate Reynolds number. However, for flows at very-high Reynolds number

with no-near boundaries (and unbounded domains) the contour dynamical

method and the invariant-core vortex (ICV) method, e.g., as proposed by

Chorin,15'16,17 are possible grid-free choices. The former may require

two or more nested contours per region to adequately represent realistic

continuum vorticity variations. However, the contour dynamical method is

more accurate than the ICV method. As shown in Hald [181, the spatial

error for the ICV method is O(N 1) in the L2 norm and O(N /2) in the

maximum norm, where N is the number of point vortices used to cover a two-

dimensional region. In the contour dynamical model the error is

n((h -, O(Nc2) in the maximum norm, where Nc is the number of nodes

on the contours. In both models the number of operations per time step is

O(N 2 ) or O(Nc), respectively. The weak approach to the continuum for the

ICV method indicates that the intermediate "spectrum" (or scale-sizes) of

the turbulent-like processes may be subject to systematic errors at long

times if a "reasonable" number of particles are not used.
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APPENDIX: Time step for predictor-corrector algorithm.

For convex figures the predictor-corrector algorithm causes a net

area growth which can be controlled by decreasing the time step, At, as

we now describe. Consider a circular FAVR of radius R and vorticity

density w. The speed of a boundary point is

V0 = wR0/2. (Al)

Thus, the predictor algorithm displaces the point (R ,O) to (R ,V0At)

and the velocity at the point is V (-V At/R ,l). Thus, the corrector

algorithm (which averages the velocities) displaces the point (R ,O) to

(R0 - (V0At)
2/2Ro, V0At). This yields a circle with areas

A(At) = nR 2 [1 + 1 VoAt/R) 4 . (A2)

The relative change in area in one unit of time is

A(l) A(O) . = AAl 0 1 (V- 04 t3. (A3)

0

We note that for circular FAVR's

V/R = jdV/dsj, (A4)

where V is the velocity of any point on the contour. Eq. (A 4) is the

basis for generalizing to a noncircular FAVR.



Table 1. Doubly-connected symmetric rotating V-states (wi : 1.0).

N (a) x (b) a(c) A R(d) P x Qz/A *(e)

2

1 0.80 0.9943 0.03123 0.09970 0.6265 0.9000 0.003068 .09824 0.003068

3 0.60 0.9685 0.1217 0.1968 1.237 0.8002 0.01513 .1243 0.01512

5 0.40 0.9044 0.2553 0.2851 1.795 0.7015 0.04146 .1624 0.04129

6 0.30 0.8461 0.3244 0.3213 2.030 0.6536 0.06108 .1883 0.06043

7 0.20 0.7597 0.3782 0.3470 2.213 0.6082 0.08344 .2206 0.08139

8 0.10 0.6395 0.3963 0.3552 2.326 0.5692 0.1027 .2591 0.09733

9 0.05 0.5726 0.3864 0.3507 2.357 0.5566 0.1073 .2777 0.09925

10 0.01 0.5342 0.3771 0.3465 2.389 0.5545 0.1074 .2848 0.09760

(a) Odd numbered contours are shown in Fig. 1.

(b) x2 is the point closest to the origin. All curves are normalized so that

the point farthest from the origin is at 1.0.

(c) Aspect ratio, a = maximum vertical diameter / maximum horizontal diameter.

(d) R = (A/7)
1/2

(e) A* = 2



Table 2. Parameters for the dynamical simulation of perturbed V-states.

Case Fioures Initial Contours Initial Perturbation
1.1 2 V-state No. 8 None
1.2 3,4 V-state No. 8 Each contour 0.02 out-

ward (i(O) = 0.5892)1.3 5,6 V-state No. 8 Each contour 0.005 in-

ward (x(O) = 0.5642)1.4 7,8 V-state No. 8 Each contour 0.02 in-

ward (;(0) = 0.5492)1.5 9 State in case 1.4

at t = l0 with
common boundary re-
moved

1.6 10,11 V-state No. 8 Right contour with

"third" harmonic, Eq.
(16)

- I



Table 3. Parameters for merger/no-merger runs (in all cases FAVR 1 has center
at (0,0), rI  - , = 1, F - 3.142).

Behavior
Case Figure X2c r2  w2 r2  tF until tF

2.1 12a 2.0 0.2 2.5 .3142 38 no merger

2.2 12b 1.8 0.2 2.5 .3142 19 merger

2.3 12c 1.6 0.2 2.5 .3142 10 merger

2.4 12d 1.8 0.3162 1.0 .3142 12 wrap-around

2.5 13a 2.0 0.0 - .3142 328 no merger

2.6 13b 1.8 0.0 - .3142 24 merer

2.7 13c 2.0 0.2 7.854 .9870 15.78 merc..,



FIGURE CAPTIONS

1. Rotating symmetrical V-states. Parameters are given in Table 1.

2. Diagnostics for the unperturbed V-state No. 8, case 1.1.

a) AA/A = (A(t) - A(O))/A(O);

b) AP/P = (P(t) - P(O))/P(O);

c) ARI/R = (R(t) - R(O))I(O);

d) AKIK = (max JK(t)l - max IK(O)I)/max ki(0)I.

3. Outward perturbed V-state No. 8, case 1.2.

a) Physical space;

b) Curvature vs arc length.

4. Diagnostics for the outward perturbed V-state No. 8, case 1.2.

See Fig. 2 for explanation of panels.

5. Inward perturbed V-state No. 8, case 1.3.

a) Physical space;

b) Curvature vs arc length.

6. Diagnostics for the inward perturbed V-state No. 8, case 1.3.

a) AA/A = (A(t) - A(O))/A(O);

b) AP/P - (P(t) - P(O))/P(O);

c) Ai/i 2 (R(t) - i(O))/i(O);

d) InaiA/i ] = lnl(i(t) - i(O))/(O)!.

7. Inward perturbed V-state No. 8, case 1.4.

a) Physical space;

b) Curvature vs arc length.

8. Diagnostics for the inward perturbed V-state No. 8, case 1.4.

See Fig. 6 for explanation of panels.

9. Inward perturbed V-state No. 8, case 1.5. Continuation of case 1.4 from

t = 10, where the common boundary has been removed.

q



FIGURE CAPTIONS (Continued)

a) Physical space;

b) Curvature vs arc length.

10. Asymmetrically perturbed V-state No. 8, case 1.6.

11. Diagnostics for asymmetrically perturbed V-state No. 8, case 1.6.

See Fig. 6 for an explanation of panels.

12. Circular FAVR interactions. FAVR 1 has center at (0,0), rI = 1,

Wl = 1, r1 = 3.142. FAVR 2 has center at (x2c,O).

a) Case 2.1, X2c = 2.0, r 2 = 0.2, w2 = 2.5, r2 = .3142

b) Case 2.2, X2c = 1.8, r2 = 0.2, Ci2 = 2.5, r 2 = .3142

c) Case 2.3, X2c = 1.6, r2 = 0.2, 2 z 2.5, r 2 = .3142

d) Case 2.4, X2c = 1.8, r2 = 0.3162, w2 = 1.0, r 2 = .3142

13. FAVR-FAVR or FAVR-point vortex interactions. FAVR 1 is as in Fig. 12.

Circular FAVR 2 or PV 2 has center at (X2cO).

a) Case 2.5. PV 2, X2c - 2.0, r 2 = .3142

b) Case 2.6, PV 2, X2c = 1.8, r2 =- .3142

c) Case 2.7, FAVR 2, x2c - 2.0, r2 - 0.2, w2 7 7.854, r2 0.9870
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